МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Кузбасский государственный технический университет имени Т. Ф. Горбачева»

Институт информационных технологий, машиностроения и автотранспорта

УТВЕРЖДАЮ

Директор ИИТМА

В Д.В. Стенин

Рабочая программа дисциплины

Теплотехника

Направление подготовки «23.03.03 Эксплуатация транспортно-технологических машин и комплексов» Профиль «01 Автомобили и автомобильное хозяйство»

> Присваиваемая квалификация "Бакалавр"

> > Формы обучения очная, заочная

Кемерово 2017

Рабочую программу составил Ассистент кафедры ТЭ К.Ю. Ушаков ФИО

Рабочая программа обсуждена на заседании кафедры теплоэнергетики

Протокол № <u>10</u> от <u>[2.04.2017</u>

Зав. кафедрой теплоэнергетики

А.Р. Богомолов ФИО

Согласовано учебно-методической комиссией по направлению подготовки (специальности) 23.03.03 «Эксплуатация транспортно-технологических машин и комплексов»

Протокол № <u>9.</u> от <u>02.5.17</u>

Председатель учебно-методической комиссии по направлению подготовки (специальности) 23.03.03 «Эксплуатация транспортно-технологических машин и комплексов»

А.И. Подгорный

подпись

ФИО

1 Перечень планируемых результатов обучения по дисциплине "Теплотехника", соотнесенных с планируемыми результатами освоения образовательной программы

Освоение дисциплины направлено на формирование:

общепрофессиональных компетенций:

ОПК-2 - владеть владением научными основами технологических процессов в области эксплуатации транспортнотехнологических машин и комплексов

Знать: теоретические основы теплотехники, основные законы, управляющие процессами получения и преобразования тепловой энергии, методы анализа эффективности использования теплоты. Уметь: анализировать термодинамические процессы в транспортнотехнологических машинах и

Владеть: методами решения современных прикладных задач с использованием основных законов теоретических основ теплотехники

профессиональных компетенций:

ПК-22 - владеть готовностью изучать и анализировать необходимую информацию, технические данные, показатели и результаты работы по совершенствованию технологических процессов эксплуатации, ремонта и сервисного обслуживания транспортных и транспортнотехнологических машин и оборудования различного назначения, их агрегатов, систем и элементов, проводить необходимые расчеты, используя современные технические средства

Знать: термодинамические процессы и основы их анализа;

Уметь: производить теплотехнические расчеты промышленных энергетических установок и устройств, анализировать и оптимизировать процессы теплообмена в технологическом оборудовании.

Владеть: методами решения современных прикладных задач с использованием основных законов теоретических основ теплотехники, навыками применения вычислительной техники в решении теоретических и практических проблем теплотехники.

В результате освоения дисциплины обучающийся в общем по дисциплине должен

- теоретические основы теплотехники, основные законы, управляющие процессами получения и преобразования тепловой энергии, методы анализа эффективности использования теплоты.
 - термодинамические процессы и основы их анализа;

Уметь:

- анализировать термодинамические процессы в транспортнотехнологических машинах и комплексах
- производить теплотехнические расчеты промышленных энергетических установок и устройств, анализировать и оптимизировать процессы теплообмена в технологическом оборудовании.

Владеть:

- методами решения современных прикладных задач с использованием основных законов теоретических основ теплотехники
- методами решения современных прикладных задач с использованием основных законов теоретических основ теплотехники, навыками применения вычислительной техники в решении теоретических и практических проблем теплотехники.

2 Место дисциплины "Теплотехника" в структуре ОПОП бакалавриата

Для освоения дисциплины необходимы компетенции (знания умения, навыки и (или) опыт профессиональной деятельности), сформированные в рамках изучения следующих дисциплин: Математика, Физика.

Для освоения дисциплины студенту необходимо знать дифференциальное и интегральное исчисление, дифференциальные уравнения в частных производных, молекулярно-кинетическую теорию, 1 и 2 законов термодинамики, истечение газов и паров, режимы течения жидкостей и газов.

3 Объем дисциплины "Теплотехника" в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам занятий) и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины "Теплотехника" составляет 4 зачетных единицы, 144 часа.

1503983293

#	Количе	Количество часов	
Форма обучения	ОФ	3Ф	03Ф
Курс 2/Семестр 3			
Всего часов	144	144	
Контактная работа обучающихся с преподавателем (по видам учебных занятий):			
Аудиторная работа	ı		
Лекции	18	6	
Лабораторные занятия	24	6	
Практические занятия			
Внеаудиторная работа	ı		
Индивидуальная работа с преподавателем:			
Консультация и иные виды учебной деятельности			
Самостоятельная работа	66	123	
Форма промежуточной аттестации	экзамен /36	экзамен /9	

4 Содержание дисциплины "Теплотехника", структурированное по разделам (темам)

4.1. Лекционные занятия

Раздел дисциплины, темы лекций и их содержание		Трудоемкость в часах		
	ОФ	3Ф		
Раздел 1. Предмет теплотехника 1.1. Основные понятия и определения. Теплота, работа, рабочее тело.	2	1		
Раздел 2. Основные законы термодинамики 2.1. I, II, III закон термодинамики.	4	1		
Раздел 3. Термодинамические циклы 3.1. Общие понятия. Цикл Карно и его анализ. 3.2. Циклы ДВС и их анализ. 3.3. Холодильные циклы. Тепловой насос.	4	1		
Раздел 4. Теплообмен 4.1. Виды теплообмена: теплопроводность, теплоотдача, излучение, теплопередача. Основные формулы расчета.	2	0,5		
Раздел 5. Теплообменные аппараты 5.1. Классификация, устройство теплообменных аппаратов. Расчет и выбор теплообменника.	2	0,5		
Раздел 6. Топливо, котельные установки 6.1. Виды топлива, химический состав, основные характеристики. Условия топлива. 6.2. Общее устройство котельных установок, классификация. Тепловой баланс.	2	1		
Раздел 7. Промышленная ветиляция. 7.1. Вентиляция и отопление производственных помещений	2	1		
Итого	18	6		

4.2. Лабораторные занятия

Наименование работы	Трудоемко	ость в часах	
	ОФ	3Ф	
ЛР №1 Изучение зависимости давления воды и насыщенного водяного пара от температуры	4	1	
ЛР №2 Определение коэффициента теплопроводности твердого материала методом цилиндрического слоя	4	1	
ЛР №3 Расчет и анализ цикла холодильной машины	4	1	
ЛР №4 Сравнение эффективности различных теоретических циклов двигателей внутреннего сгорания	4	1	
ЛР №5 Влияние характеристик теоретических циклов газотурбинных установок на термический КПД цикла	4	1	
ЛР №6 Изучение процесса теплообмена в теплообменнике типа «труба в трубе»	4	1	
Итого	24	6	

4.3 Самостоятельная работа студента и перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

Вид СРС	Трудоемкость в часах	
	ОФ	3Ф
Подготовка отчетов к лабораторным работам	20	30
Подготовка ответов на контрольные вопросы к лабораторным работам	20	33
Изучение теоретического материала для теститрования	26	60
Итого	66	123

5 Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине "Теплотехника", структурированное по разделам (темам)

5.1 Паспорт фонда оценочных средств

Nº	Наименование разделов дисциплины	Содержание (темы) раздела	Код компетенции	Знания, умения, навыки, необходимые для формирования соответствующей компетенции	Форма текущего контроля знаний, умений, навыков, необходимых для формирования соответствующей компетенции
----	-------------------------------------	------------------------------	--------------------	--	---

1	Предмет Теплотехника	Основные понятия и определения. Теплота, работа, рабочее тело.	ОПК-2, ПК-22	Знать -теоретические основы теплотехники, основные законы, управляющие процессами получения и преобразования тепловой энергии, методы анализа эффективности	Отчет по лабораторной работе №1 Защита лабораторной работы №1 Тестирование Т1
2	Основные законы термодинамики	I, II, III законы термодинамики. Понятие энтропии, энтальпии, эксэргии		использования теплоты; - термодинамические процессы и основы их анализа; Уметь - анализировать термодинамические	Отчет по лабораторной работе №2 Защита лабораторной работы № 2 Тестирование Т2
3	Термодинамические циклы	Общие понятия. Цикл Карно и его анализ. Циклы ДВС и их анализ. Холодильные циклы. Тепловой насос.		процессы транспортнотехнологических машинах и комплексах; производить теплотехнические расчеты промышленных энергетических установок и устройств, анализировать и оптимизировать процессы	Отчет по лабораторной работе №№ 3,4,5 Защита лабораторной работы №№ 3,4,5 Тестирование ТЗ
4	Теплообмен	Виды теплообмена: теплопроводность, теплоотдача, излучение, теплопередача. Основные формулы расчета.		теплообмена в технологическом оборудовании. Владеть - методами решения современных прикладных задач с использованием основных законов теоретических основ	Отчет по лабораторной работе №6 Защита лабораторной работы №6 ТестированиеТ4,Т5
5	Теплообменные аппараты	Классификация, устройство теплообменных аппаратов. Расчет и выбор теплообменника.		теплотехники, -методами решения современных прикладных задач с использованием основных законов теоретических основ теплотехники, навыками	
6	Топливо, котельные установки	Виды топлива, химический состав, основные характеристики. Условия топлива. Общее устройство котельных установок, классификация. Тепловой баланс.		применения вычислительной техники в решении теоретических и практических проблем теплотехники.	Тестирование Т6
7	Промышленная вентиляция	Вентиляция и отопление производственных помещений			Тестирование Т7

5.2. Типовые контрольные задания или иные материалы

5.2.1.Оценочные средства при текущей аттестации

Пример контрольных вопросов к лабораторной работе:

- 1. Что такое коэффициент теплопроводности?
- 2. Дифференциальное уравнение теплопроводности.
- 3. Условие однозначности для процесса теплопроводности.
- 4. Граничные условия, способы их задания.
- 5. Уравнения для определения теплового потока через плоскую и цилиндрическую стенку.

6. Тепловая проводимость и термическое сопротивление стенки.

При проведении защиты лабораторной работы обучающимся будет задано несколько вопросов, на которые они должны дать ответы. Критерии оценивания:

- 100 баллов при правильном и полном ответе на вопросы;
- 75...99 баллов при правильном и полном ответе на часть вопросов и правильном, но не полном ответе на другую часть вопросов;
- 50...74 баллов при правильном и неполном ответе на вопросы или правильном и полном ответе только на часть вопросов;
 - 25...49 баллов при правильном и неполном ответе только на один из вопросов;
 - 0...24 баллов при отсутствии правильных ответов на вопросы.

Количество баллов	024	2549	5064	6574	7599	100
Шкала оценивания	Не зачтено	0		Зачтено		

Требования к отчету по лабораторным работам №1-6

Отчет оформляется на листах формата А4 с рамками и штампами и должен содержать:

- 1) титульный лист установленной формы;
- 2) кратко изложенные теоретические положения;
- 3) принципиальную схему лабораторного стенда с основными техническими параметрами;
- 4) таблицу измеренных и рассчитанных величин;
- 5) обработку результатов;
- 6) графические зависимости при необходимости;
- 7) выводы по работе.

Чертежи, схемы и таблицу следует оформлять в соответствии с действующими стандартами и ГОСТами.

Критерии оценивания:

- в отчете содержатся все требуемые элементы, и они соответствуют лабораторной работе 65...100 баллов;
- в отчете содержатся все требуемые элементы, однако они не соответствуют лабораторной работе, или представлены не все требуемые элементы или отчет не представлен 0...64 баллов.

Количество баллов	064	65100
Шкала оценивания	Не зачтено	Зачтено

Для текущего контроля знаний студентов ТК в виде письменного опроса Т разработаны контрольные вопросы.

Пример, текущий опрос Т1:

- 1. Что изучает теплотехника?
- 2. Что означает понятие термодинамическая система? Приведите характеристики термодинамической системы.
- 3. Перечислите термодинамические параметры состояния рабочего тела? Напишите размерность основных параметров состояния рабочего тела.
 - 4. Перечислите разновидности давлений. Как они связаны между собой?
 - 5. Какие вы знаете температурные шкалы, и какая между ними существует связь?

Требования к результатам тестирования

При проведении тестирования по усвоению теоретического материала студенты должны выбрать правильные ответы. Критерии оценивания:

- 100 баллов при правильном и полном ответе на все вопросы;
- 75...99 баллов при правильном ответе на 75% вопросов;
- 65...74 баллов при правильном ответе на 65% вопросов
- 50...64 баллов при правильном ответе 50 % вопросов; - 25...49 баллов - при правильном ответе на 25 % вопросов;
- 0...24 баллов при правильном ответе на 25 % вопросов,

	1 /	1			1			
Количество баллов		0	- 7/1 1	2549	5064	6574	7599	100
Шкала оценивания	•	Не	е зачтенс)		Зачтено	•	

5.2.2 Оценочные средства при промежуточной аттестации

Промежуточная аттестация по дисциплине проводится в соответствии с учебным планом в виде экзамена. Инструментом измерения сформированности компетенций является ответы на вопросы к

503983293

экзамену:

- 1. Параметры и функции состояния рабочего тела.
- 2. Приборы для измерения параметров состояния рабочего тела. Запорная арматура.
- 3. Функции процесса. Графические изображение тепла и работы.
- 4. Циклы ДВС их особенности и отличие. Графическое изображение циклов, расчет и анализ цикла ДВС.
- 5. Цикл Карно. Практическая значимость цикла.
- 6. Холодильный цикл. Принцип работы холодильной установки.
- 7. Виды теплообмена. Расчетные формулы.
- 8. Теплообменные аппараты. Классификация. Алгоритм расчета и выбора.
- 9. Топливо. Классификация. Осевые характеристики топлива. Условное топливо.
- 10. Теплоносители. Классификация, область применения.
- 11. Котельные установки. Классификация. Составные элементы котлоагрегата.
- 12. Теплопотребители. Классификация.
- 13. Расчет потребности тепла теплопотребителями и в целом предприятием.
- 14. Расчет потребности тепла и топлива предприятием.
- 15. Тепловой баланс котлоагрегата. Алгоритм расчета.
- 16. Выбор типа и количества котельных установок для удовлетворения тепловой нагрузки предприятием.
- 17. Системы теплоснабжения. Классификация.
- 18. Особенность паровых систем теплоснабжения.
- 19. Тепловой пункт. Назначение. Оборудование. Схема теплового узла.
- 20. Пластинчатый теплообменник. Назначение устройства.
- 21. Гидравлический расчет теплосети. Алгоритм.
- 22. Нарисуйте схему 2-х контурной незамерзающей калориферной установки.
- 23. Нарисуйте схему приточно-вытяжной системы вентиляции.
- 24. Вентиляция. Назначение. Классификация.
- 25. Калориферные установки. Назначение. Расчет.
- 26. Алгоритм расчет технического совершенства реального цикла ДВС.
- 27. Основные законы термодинамики.
- 28. Вечный двигатель первого и второго рода. Почему невозможно создание вечного двигателя?
- 29. Нарисуйте в координатах Т S диаграмму циклов ДВС (Отто, Дизеля, Тринклера).

При проведении промежуточной аттестации обучающимся будет задано два вопроса, на которые они должны дать ответы. Критерии оценивания:

- 100 баллов при правильном и полном ответе на два вопроса;
- 75...99 баллов при правильном и полном ответе на один из вопросов и правильном, но не полном ответе на другой из вопросов;
- 50...74 баллов при правильном и неполном ответе на два вопроса или правильном и полном ответе только на один из вопросов;
 - 25...49 баллов при правильном и неполном ответе только на один из вопросов;
 - 0...24 баллов при отсутствии правильных ответов на вопросы.

Количество баллов	024	2549	5064	6574	7599	100
Шкала оценивания	неудовлетворительно	удовлетвори	тельно	хорошо		отлично

5.2.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций

При проведении защиты лабораторных работ на занятии обучающиеся убирают все личные вещи с учебной мебели, достают листок чистой бумаги и ручку. На листке бумаги записываются Фамилия, Имя, Отчество, номер группы и дата проведения опроса. Далее преподаватель задает вопросы, из перечисленных в методических указаниях к лабораторной работе. В течение пяти минут обучающиеся должны дать письменно и/или устно ответы на заданные вопросы, при этом запрещено использовать любую печатную и рукописную продукцию, а также любые технические средства. Если обучающийся воспользовался любой печатной или рукописной продукцией, а также любыми техническими средствами, то его ответы на вопросы не принимаются и ему выставляется 0 баллов. Результаты оценивания ответов на вопросы доводятся до сведения обучающихся сразу.

Допуск к промежуточной аттестации обучающийся получает только при успешного прохождения текущего контроля по каждой лабораторной работе.

6 Перечень основной и дополнительной учебной литературы, необходимой для освоения лиспиплины "Теплотехника"

6.1 Основная литература

- 1. Теплотехника [Текст] : учебник для студентов вузов, обучающихся по специальностям направления подготовки "Эксплуатация наземного транспорта и транспортного оборудования" и по направлениям подготовки бакалавров "Эксплуатация транспортных средств" и "Эксплуатация транспортно-технологических машин и комплексов" / под ред. М. Г. Шатрова. Москва : Академия, 2013. 288 с.
- 2. Кудинов, И. В. Теоретические основы теплотехники: учебное пособие, Ч. І. Термодинамика[Электронный ресурс]. Самара: Самарский государственный архитектурно-строительный университет, 2013. 172 с. Режим доступа: http://biblioclub.ru/index.php?page=book_red&id=256110. Загл. с экрана. (15.01.2018)

6.2 Дополнительная литература

- 1. Кудинов, И. В. Теоретические основы теплотехники: учебное пособие, Ч. II. Математическое моделирование процессов теплопроводности в многослойных ограждающих конструкциях[Электронный ресурс]. Самара: Самарский государственный архитектурно-строительный университет, 2013. 422 с. Режим доступа: http://biblioclub.ru/index.php?page=book red&id=256111. Загл. с экрана. (15.01.2018)
- 2. Основы теплотехники и энергосбережение [Текст] : учебное пособие [для студентов 170500 (240801) "Машины и аппараты химических производств" и 100700 (140104) "Промышленная теплоэнергетика"] / П. Т. Петрик [и др.]; ГОУ ВПО "Кузбас. гос. техн. ун-т", Каф. процессов, машин и аппаратов хим. пр-в. Кемерово : Издательство КузГТУ, 2006. 244 с. Доступна электронная версия: http://library.kuzstu.ru/meto.php?n=90128&type=utchposob:common

6.3 Методическая литература

- 1. Темникова, Е. Ю. Изучение зависимости давления воды и насыщенного водяного пара от температуры [Текст] : методические указания к лабораторной работе по дисциплине «Тепломассообмен» для студентов направления 13.03.01 «Теплоэнергетика и теплотехника», по дисциплине «Теплотехника» для студентов направления 23.03.03 «Эксплуатация транспортно-технологических машин и комплексов», профиль «Автомобили и автомобильное хозяйство», и специальности 21.05.04.00 «Горное дело», специализация 21.05.04.10 «Электрификация и автоматизация горного производства», всех форм обучения / Е. Ю. Темникова, В. Н. Сливной, С. А. Шевырев; ФГБОУ ВО «Кузбас. гос. техн. ун-т им. Т. Ф. Горбачева», Каф. теплоэнергетики. Кемерово : Издательство КузГТУ, 2016. 6 с. Доступна электронная версия: http://library.kuzstu.ru/meto.php?n=8722
- 2. Темникова, Е. Ю. Определение коэффициента теплопроводности твердого материала методом цилиндрического слоя [Текст]: методические указания к лабораторной работе по дисциплине «Тепломассообмен» для студентов направления 13.03.01 «Теплоэнергетика и теплотехника», по дисциплине «Теплотехника» для студентов направления 23.03.03 «Эксплуатация транспортнотехнологических машин и комплексов», профиль «Автомобили и автомобильное хозяйство» и специальности 21.05.04.00 «Горное дело», специализация 21.05.04.10 «Электрификация и автоматизация горного производства», всех форм обучения / Е. Ю. Темникова, В. Н. Сливной, С. А. Шевырев; ФГБОУ ВО «Кузбас. гос. техн. ун-т им. Т. Ф. Горбачева», Каф. теплоэнергетики. Кемерово: Издательство КузГТУ, 2016. 9 с. Доступна электронная версия: http://library.kuzstu.ru/meto.php?n=8724
- 3. Темникова, Е. Ю. Изучение процесса теплообмена в теплообменнике типа «труба в трубе» [Текст] : методические указания к лабораторной работе по дисциплине «Тепломассообмен» для студентов направления 13.03.01 «Теплоэнергетика и теплотехника», по дисциплине «Теплотехника» для студентов направления 23.03.03 «Эксплуатация транспортно-технологических машин и комплексов», профиль «Автомобили и автомобильное хозяйство», и специальности 21.05.04.00 «Горное дело», специализация 21.05.04.10 «Электрификация и автоматизация горного производства», всех форм обучения / Е. Ю. Темникова, А. Р Богомолов, С. А. Шевырев; ФГБОУ ВО «Кузбас. гос. техн. ун-т им. Т. Ф. Горбачева», Каф. теплоэнергетики. Кемерово : Издательство КузГТУ, 2016. 11 с. Доступна электронная версия:

503983293

http://library.kuzstu.ru/meto.php?n=8725

- 4. Темникова, Е. Ю. Расчет и анализ цикла холодильной машины [Текст] : методические указания к лабораторной работе по дисциплине «Тепломассообмен» для студентов направления 13.03.01 «Теплоэнергетика и теплотехника», по дисциплине «Теплотехника» для студентов направления 23.03.03 «Эксплуатация транспортно-технологических машин и комплексов», профиль «Автомобили и автомобильное хозяйство», и специальности 21.05.04.00 «Горное дело», специализация 21.05.04.10 «Электрификация и автоматизация горного производства», всех форм обучения / Е. Ю. Темникова, А. Р. Богомолов, С. А. Шевырев; ФГБОУ ВО «Кузбас. гос. техн. ун-т им. Т. Ф. Горбачева», Каф. теплоэнергетики. Кемерово : Издательство КузГТУ, 2016. 11 с. Доступна электронная версия: http://library.kuzstu.ru/meto.php?n=8726
- 5. Дворовенко, И. В. Сравнение эффективности различных теоретических циклов двигателей внутреннего сгорания [Электронный ресурс]: методические указания к выполнению лабораторной работы по дисциплине «Теплотехника» для студентов направления подготовки 23.03.03 «Эксплуатация транспортно-технологических машин и комплексов» всех форм обучения / И.В. Дворовенко, И.И. Дворовенко; ФГБОУ ВО «Кузбас. гос. техн. ун-т им. Т. Ф. Горбачева», Каф. теплоэнергетики. Кемерово: Издательство КузГТУ, 2016. 10 с. Режим доступа: http://library.kuzstu.ru/meto.php?n=1823. Загл. с экрана. (24.12.2016)
- 6. Дворовенко, И. В. Влияние характеристик теоретических циклов газотурбинных установок на термический КПД цикла [Электронный ресурс]: методические указания к выполнению лабораторной работы по дисциплине «Теплотехника» для студентов направления подготовки 23.03.03 «Эксплуатация транспортно-технологических машин и комплексов» всех форм обучения / И.В. Дворовенко, И.И. Дворовенко; ФГБОУ ВО «Кузбас. гос. техн. ун-т им. Т. Ф. Горбачева», Каф. теплоэнергетики. Кемерово: Издательство КузГТУ, 2016. 9 с. Режим доступа: http://library.kuzstu.ru/meto.php?n=1844. Загл. с экрана. (24.12.2016)

7 Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

ЭБС «ЛАНЬ» - адрес для работы: https://e.lanbook.com/; ЭБС «Университетская библиоте-ка онлайн» - адрес для работы: www.biblioclub.ru; ЭБС «Консультант Студента» - адрес для работы: http://www.studentlibrary.ru

8 Методические указания для обучающихся по освоению дисциплины "Теплотехника"

Основной учебной работой студента по дисциплине является самостоятельная работа. В первую очередь студенту следует ознакомиться с целями и задачами дисциплины, также с приобретаемыми знаниями и умениями. Изучение дисциплины рекомендуется вести в последовательности, определенной темами лекционных занятий и методическими указаниями. В методических указаниях представлены темы с подробными рекомендациями для самостоятельной работы, рекомендуемая литература, предложены

вопросы для самоконтроля, которые помогут студентам в подготовке к лекционным и лабораторным занятиям.

В течение семестра студенту заочной формы обучения необходимо выполнить контрольную работу – итоговое задание, характеризующее степень и качество изучения дисциплины в период самостоятельной

подготовки.

В конце изучения дисциплины студент сдает экзамен.

9 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине "Теплотехника", включая перечень программного обеспечения и информационных справочных систем

Для изучения дисциплины может использоваться следующее программное обеспечение:

- 1. Microsoft Windows
- 2. Libre Office

10 Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине "Теплотехника"

Лаборатории оснащены четырьмя действующими стендами, соответствующими каждой лабораторной

98329

работе и лабораторным оборудованием:

Стенд № 1 Изучение зависимости давления воды и насыщенного водяного пара от температуры Стенд № 2 Определение коэффициента теплопроводности твердого материала методом

цилиндрического слоя

Стенд № 3 Изучение процесса теплообмена в теплообменнике типа «труба в трубе»

Стенд № 4 Расчет и анализ цикла холодильной машины

Для выполнения электронных лабораторных работ, необходим компьютерный класс с работающими компьютерами и мышками.

11 Иные сведения и (или) материалы

В рабочей программе представлены основные темы лекционных и лабораторных занятий, представлена самостоятельная работа студента и перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине.

Основные разделы дисциплины:

- 1. Предмет теплотехника
- 2. Основные законы термодинамики
- 3. Термодинамические циклы
- 4. Теплообмен
- 5. Теплообменные аппараты
- 6. Топливо, котельные установки
- 7. Промышленная вентиляция.

11

УТВЕРЖДАЮ

Директор филиала КузГТУ в г. Новокузнецке

Зада Э.И. Забнева « <u>01 » сентября</u> 2017 г.

Изменения рабочей программы «Теплотехника»

6.1 Основная литература

- 1. Архипов, В. А. Физико-химические основы процессов тепломассообмена [Электронный ресурс]: учебное пособие / В. А. Архипов. Томск: Издательство ТПУ, 2015. 199 с. Режим доступа: http://biblioclub.ru/index.php?page=book&id=442086&needauth=0. Загл. с экрана (дата обращения 01.08.2017).
- 2. Круглов, Г. А. Теплотехника [Электронный ресурс] : учебное пособие / Г. А. Круглов, Р. И. Булгакова, Е. С. Круглова. 2-е изд., стер. Санкт-Петербург : Лань, 2012. 208 с. Режим доступа: http://e.lanbook.com/book/3900. Загл. с экрана (дата обращения 01.08.2017).
- 3. Никитин, В. А. Лекции по теплотехнике [Электронный ресурс] : конспект лекций / В. А. Никитин. Оренбург : ОГУ, 2011. 532 с. Режим доступа: http://biblioclub.ru/index.php?page=book&id=259242&needauth=0. Загл. с экрана (дата обращения 01.08.2017).
- 4. Оболенский, Н. В. Практикум по теплотехнике [Электронный ресурс] : учебное пособие / Н. В. Оболенский, В. Л. Осокин. Княгино : НГИЭИ, 2010. 236 с. Режим доступа: http://biblioclub.ru/index.php?page=book&id=430983&needauth=0. Загл. с экрана (дата обращения 01.08.2017).
- 5. Теплотехника [Текст] : учебник для вузов / В. Н. Луканин [и др.] ; под ред. В. Н. Луканина. Москва : Высшая школа, 1999. 671 с.

6.2 Дополнительная литература

- 1. Амирханов, Д. Г. Техническая термодинамика [Электронный ресурс] : учебное пособие / Д. Г. Амирханов, Р. Д. Амирханов. Казань : Издательство КНИТУ, 2014. 264 с. Режим доступа: http://biblioclub.ru/index.php?page=book&id=428258&needauth=0. Загл. с экрана (дата обращения 01.08.2017).
- 2. Зеленцов, Д. В. Техническая термодинамика [Электронный ресурс] : учебное пособие / Д. В. Зеленцов. Самара : Самарский государственный архитектурно-строительный университет, 2012. 140 с. Режим доступа: http://biblioclub.ru/index.php?page=book&id=143845&needauth=0. Загл. с экрана (дата обращения 01.08.2017).
- 3. Кудинов, И. В. Теоретические основы теплотехники. Ч.1. Термодинамика [Электронный ресурс]: учебное пособие / И. В. Кудинов, Е. В. Стефанюк. Самара: Самарский государственный архитектурно-строительный университет, 2013. 172 с. Режим доступа: http://biblioclub.ru/index.php?page=book&id=256110&needauth=0. Загл. с экрана (дата обращения 01.08.2017).
- 4. Лукин, С. В. Физическое моделирование процессов передачи теплоты [Электронный ресурс]: учебное пособие / С. В. Лукин. Череповец: Издательство ЧГУ, 2016. 112 с. Режим доступа: http://biblioclub.ru/index.php?page=book&id=434810&needauth=0. Загл. с экрана (дата обращения 01.08.2017).

10 Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Для осуществления образовательного процесса по данной дисциплине необходима следующая

материально-техническая база:

- лекционная аудитория, оснащенная мультимедийным оборудованием;
- библиотека для самостоятельной работы обучающихся;
- компьютерный класс с выходом в сеть «Интернет» для самостоятельной работы обучающихся.